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Overview

* Acceptance sampling/Sampling plans

* Motivation

 Components of a probabilistic requirement

e Current NASA best practice (ASA)

* A potentially more efficient practice (ASV)

e Research plan, summary results, literature review
e Operating characteristic

e Derivation of variables sampling plans

* ASV sampling plan calculators

 Empirical testing and results

e Tests of the fundamental assumption (near normal, near
exponential skew, and modest skew)

* Procedure for selecting a sampling plan (flow diagram
e Summary/Contributions



Acceptance sampling

* One of the oldest problems in quality engineering is to
assess the acceptability of items that a customer
receives from a producer.

e Acceptance sampling is an alternative to 100%
inspection applied when inspection is destructive, or
when the time and/or cost of 100% inspection are
unwarranted or prohibitive.

e Based on inspection of the sample, the customer
decides whether to accept or reject the entire lot, or to
continue sampling.

* There are standards (MIL, ANSI, and I1SO) pertaining to
acceptance sampling.




Sampling plans

* A sampling plan is the pair (n,c) or (n,k) , where n is
the minimum sample size, i.e., the minimum number
of observations required to verify statistically the
requirement.

* For discrete random variables, the constant C is the
maximum number of nonconforming observations
supporting the determination that a lot is acceptable.

* For continuous random variables, constant multiplier
K is the minimum distance (in standard deviations)
between the sample mean and the required limit
supporting the determination that a lot is acceptable.



Motivation

Our interest in acceptance sampling arose in an
analogous sampling experiment--the need to verify
level-two design requirements for Cx “by analysis”
using Monte Carlo simulation.

[CA0049-PO] The CalLV [Cargo Launch Vehicle] shall launch LSAM
[Lunar Surface Access Module] from the launch site to the Earth

Rendezvous Orbit (ERO) for Lunar Sortie Crew and Lunar Outpost
Crew missions

The delivery of the LSAM from the launch site to the ERO shall be
verified by analysis. The analysis shall be performed using NASA-
accredited digital flight simulations. The analysis shall include
Monte Carlo dispersions on mass properties, engine performance,
GN&C parameters and environmental parameters. The verification
shall be considered successful when the analysis results show that
there is a [p] probability with a [100(1-)%] confidence that the
LSAM reaches ERO.

2. 8
X

- ——

r—

T —

-

Ht
|
& p—
'
)

U



Components of a probabilistic
design requirement

Condition (I)

conformance indicator (typically
a limit on the value of an output
variable)

Reliability (p)

minimum probability of
achieving the condition

Consumer's risk ([3)

maximum probability of
accepting a nonconforming
design

Producer's risk (o)

maximum probability of
rejecting a conforming design

0.0040 -
0.0035 1
0.0030 1
0.0025
0.0020 -
0.0015 1
0.0010 1
0.0005
0.0000

0.9

Values in Thousa...

Consider the (true but unknown) parent
distribution of an output variable X.

We can see that this output meets the
condition X<1463 with reliability p=0.997.

If we knew the parent distribution a
priori, there would be no sampling error
and the risks would be f=0=0.




Current NASA best practice for requirements
verification using Monte Carlo

Pass
Fail
Sample the parent distribution Count the number of simulation trials
using Monte Carlo simulation in which the output fails the condition

The current best practice employs attributes acceptance sampling (ASA). For the required
reliability and consumer’s risk, the sampling plan specifies number of trials (n) and the
maximum number of failures permitted (c) to substantiate the validity of the design.

Advantage: Plans are exact and can be determined a priori. (Nonparametric--by definition,
the distribution of the count is Binomial(n,p), where p is the true reliability.)

Disadvantage: Plans require large samples for high confidence in highly reliable designs
(the pass/fail count ignores “by how much” ).
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The current project seeks a best practice employing variables acceptance sampling (ASV).
For the required reliability and consumer’s risk, the sampling plan specifies number of
trials (n) and the minimum multiplier (k) to substantiate the validity of the design.

Advantage: ASV plans typically require fewer trials than ASA plans (but not always).

Disadvantages: Software for plan generation is unavailable; procedures/assumptions
reported in the academic literature appear to be largely untested.




Research plan and summary results

Software search

Off-the-shelf plan calculators (commercial or otherwise) were
found only for normal variates.

Literature search

Implementation

Empirical Testing

Application issues

Plans for 5 additional variates were found in the academic
literature (Exponential, Gamma, Weibull, Inverse Gaussian,
Poisson, Burr).

Calculators were implemented in Excel for Binomial, Normal,
Exponential, Gamma, Weibull, Inverse Gaussian, and Poisson.
(Burr not attempted. ) Verified against published examples. Plans
typically, but not invariably, smaller than corresponding ASA
plans.

Monte Carlo simulation applied to test plans derived for typical
(Constellation-like) OC from all seven calculators. All were
validated, except for Inverse Gaussian. Error in the published IG
derivation discovered.

Fundamental assumption that the distributional form can be
determined uniquely from sample data tested using Monte Carlo.
Assumption not substantiated for typical OC. Conservative
protocol developed for selecting plans to use in practice.
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Operating Characteristic

Every sampling plan has an operating characteristic (OC)
which defines the probability of accepting a population
P.(p) for every value of the failure probability pe[0,1].

\ A sampling plan is derived by
1-a defining two operating points,

(po,1-) and (p,, ), where p< p,
and a and £ are small probabilities.

P.(p)

OC curve.

B ’\
o Po P, 001

p
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Derivation of variables plans

 The underlying problem can be framed as an
hypothesis test for which we intend to enforce
both significance and power requirements.

 The null and alternate hypotheses are
Hy: P =Py and Hi:p=p;>p
* Under H, we accept the population as conforming

and under H; we reject the population as
nonconforming.

* The inequalities
P.(Po) > 1-a and P,(py) <b
establish the significance and power of the test.

12



Derivation of variables plans

With the form of the
distribution F(X; &)
known, the null and
alternate hypotheses
are equivalent to

Hy: 6= 6,
H,;: 0= 6,> 6,

as shown for a required
lower bound X

min-*
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Derivation of variables plans

The power requirements
are applied to the
sampling distribution

F(0;0,n)

to determine the
acceptance limit A,
required sample size n,
and multiplier k.

l-a JL _________
F@.8.n)
BT J
Xmin
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Dashboard for the Weibull Calculator

Weibull(v,x,y) Acceptance Sampling Plans

rew KPW 18 April 2003

. n
Wislbull POF ENTER the lower and upper test points (reliabilities
E_NT_ER the Parame_tersnf the WElhll“(\l',?.,'f_'} - 0<p<p,<0.999), fixed p risk, and the lower or upper
distribution in the fields belnu:. The statistics for ~ limit on the Weibull random wvariable X based on the
the Weibull random variable X are computed by the oo Al e ——
calculator. | II
|
Input v [shape] A[zoale] oy (location) - I,II \ Input oy B 5. Koo AL
= T
From fit [ 100 1000 I.'I II reqguirement 0.9973 0.1 0.9349 11367
f.-'r l".l If the limit is less than the mean, the value entered is
. 0 e ————————————— ssumed to be a lower limit; if the limit is greater than
Caleulated fMeanp  Std Dev.o Shew Kurtasis 1000 1040 1020 1120 1180 1200 1340 1280 the mean, the value entered is assumed to be an upper
fromfic | 10927719 17.976749  -0.373262 3.0354553| | )=
The corresponding (i, k) sampling plans and associated a risks Operating Characteristic (OC) or Power Curves for all plans.
are tabluated .
" Ko {lowrer limi) hAd Ko {upper limit) )
Fesults & # @ Accept B . -
1486| 2 3775087 [ITIT] Tes 11355118
1348 2380439 0.0z Tes 1135 5645
1267| 2 3823936 0003 Tes 11355996
1209 238391 0.004 Yes 11356269
1163] 2 3851735 0_00% Yes 1135 6496
1126| 23862671 0_006 Yes 135 6693
1095 23872393 o0.0o7 Yes 1135 6867
1067F| 23881198 0_00g Tes 1135.7026 x x
1043| 2 3883281 0003 Tes 11357171 o 01 02 o o0 o1 o= oE 0
1021] 2383678 0. Tes 1135.7306
876| 23953703 0.2 Tes 113583249 . RN J
F90| 23994907 0.3 Tes 1135907
728| 2 4029002 0.04)  Yes 1135 9683] _ — -
679| 24058971 0.05]  Yes 1360221 Koo (s limit L (upperlimit)
639] 2 4086241 006 Yes 11360712 = -
&5 2 4111618 o7 Yes 11361168 = = |
576] 2 4135606 008 Yes 11361599 = =
549| 2 4158546 009 Tes 1M36.201 ] ::
526| 2 4180673 [N | Tes 113624049 é ] ]
433 24284349 1% Tes 11364273 = "E
366| 2 4383814 02 Tes 1136 6061 £ E
33| 2 4484937 0.2% Mo M36.TE7I = | £ !
269| 2 45916399 0.3 Mo 11369798 z i = F-l
23] 24707793 035 No 137 1885 1 ) 1
197| 2.4237409 04| Mo 1127 4215 _ .o ! 1
168] 2 4985953 045 No 137 6886 Cogfermanes Pabebily Camfzrmance P
141] 2. 5161042 0.5 No 1138.0033] Fan y

DETERMINE if the design is acceptable from the plan with

Calculations are aproximate, based on the procedure given by K. Takagi (1972) "0n deignint_.} uknown-
the largest value of i which is no greater than the number of sigma sampling plans based on a wide class of non-normal distributions, Technometrics, 14{3): 669-

data points used to fit the distribution.

673.
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Empirical test results (example)

Consider an upper limit of X.,,,=10,000 for a random variable X
distributed Weibull with unknown shift parameter ¢ and estimated
shape and scale parameters. For the test OC (pg, @)=(0.005,0.2),
(P1,)=(0.001,0.1), the associated the null and alternative means
are 1, =7841.64 and p, =8121.07, respectively. The variables plan
from the gamma calculator is (n,k)=(156, 2.17779).

100... + 100... +

| %... ) o.. | | %... ) o.. | 1
1.0 ; —— 1.0 ; =
0.9
0.8 AL\
0.8 1 0.8 1 0.7 \ OC
0.6 \
0.6 1 0.6 1 Pofp) 0.5 \
0.4
0.3
0.4 1 0.4 1
0.2
0.1
0.2 0.2 1 e T R
Null Alternate 00.000L002 00RO 0AE0UEOGY.00B008.01
0.0 — . 0.0 — . P

ooooooo
R ®§ 8 8 8 & 2 2 8 8 8 8 . - ;
=2 3 = == \\/iebull Upper Limit = == Attributes
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Empirical test example results
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Sample Standard Deviati...

1300 -

Sampling distribution of
the mean estimated using

100,000 Monte Carlo
trials.

Scatter diagram for
estimated i and o.
Line is the
acceptance limit
A=u-Ko
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Empirical test summary results

o and [ estimated using 100K Monte Carlo trials for
plans with (p,, @)=(0.005,0.2), (p4,£)=(0.001,0.1)

Results for X, ~=1000

Variable n K o B n,/n,
Exponential () 2 |2.43x103| 0.200 | 0.082 0.003
Normal(x,0=100) 18 2.886 0.191 | 0.097 0.023
Normal(u, o) 88 2.886 0.191 | 0.097 0.099
Gamma( 10,338 ,0) 206 2.131 0.193 | 0.096 0.224
Weibull( 10,1995 ,5) 91 3.623 0.189 | 0.079 0.117
1G( 1502, 100000, 0) 18 2.886 0.173 | 0.382 | unusable

18




Empirical test results

Results for X.,.,=10,000

Variable n K o B n,/n,
Exponential(1) 66 | 6.26922 | 0.200 | 0.082 | 0.085
Gamma( 10,441 ,9) 7 3.667 | 0.189 [0.104 | 0.099
Weibull(10,3800,5) | 156 | 3.623 | 0.188 | 0.081 | 0.201
Results for discrete
Variable n C o B n,/n,
Binomial(n,p) 777 1 0.188 | 0.100 1
Poisson(n,p) 21 88 0.191 | 0.097 | 0.035
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ASV fundamental assumption

The fundamental assumption of ASV is that the form of the
output distribution is known a priori. (Moreover, validity
testing showed that ASV procedures are robust to error in
the shift and scale parameters, but not to shape
parameters. )

* In general, the assumption is unsubstantiated and the form of
the distribution must be determined by fitting sample data.

* The question naturally arises, “How many trials are required in
order to fit the correct form of the parent distribution?”

 Specifically, “Can we obtain a unique fit to the correct parent
distribution based on a sample which is approximately the
same size as that specified in the corresponding ASV plan?”

* The literature appears to be essentially silent on this issue.

For an exception, see C. Liu (1997) A Comparison Between the Weibull and
Lognormal Models Used to Analyse Reliability Data, Ph.D. Dissertation, University
of Nottingham, UK

20




Test case 1—Near Normal

Three parent ] — (o soncoce s
O U t p Ut Minimum —0o0
. . . 0.0045 - Maximum +00
distributions | ;. e
where chosen|  o.o0s!
with similar | o0 T Gssasosy o
0.0025 - —
shapes and| pinimum 558,960
identical 0.0015 Std Dev 100,002
means and 0.0010 1 Weibull o
standard 0.0005 - — 8.6698.;2)7),366.6,Rlsk5h|ft
d . . 0.0000 - - - - - Minimum 869.2500
eviations. S S 4 Va,ﬂ.;es in,_T:hous: SA g o 12000000
Std Dev 100.0000
Fitting tests were performed for a requirement with
condition: limit (upper or lower)
reliability: p=0.9973
consumer’s risk: /=0.1
(This seems typical of what we had been seeing as Cx level 2 requirements.)
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RiskGamma(54.965,13.798,RiskShift(442.998))

Test 1 procedure and results

RiskWeibull(2.8645,308.34,RiskShift(925.98))
0.9... 14..

e 30 samples of 100 trials each were drawn from the
parent Normal distribution.

* Normal, Gamma, Weibull, and Exponential

0.0045 7

distributions were fit to sample using commercial TN | EE
software (@RISK). e
* In general, good fits to the Normal data were RERIIAY T
achieved with a Normal distribution.
* But good fits also were achieved with Weibull and
often Gamma (but not Exponential).
* Fits were compared using three alternative
goodness-of-fit (GOF) tests--the “best fit” was

sensitive to the GOF test used. (Note: Anderson-
Darling is the preferred test here because it gives
more weight to the tails.)

0.0000

0.8
1.8
2.0

Conclusion: For our

* The test procedure was repeated for samples of 300 example, the size of the
trials each, with no appreciable change in the nature | [ sampling plan is inadequate
of the results. to distinguish the parent

* The test procedure was repeated for sam‘ples of 100 distribution for data sets
and 300 drawn from the Gamma and Weibull parent .
distributions, with no appreciable change in the with near-normal shape.
nature of the results.




Useful result

Acceptance limits for
0=0.9973 for the three
parent distributions.

Normal 922 1478
Gamma 957 1513
Weibull 943 1463

Normal Par...
0.9... 1.4..

0.0045 1

0.0036 1

0.0027 1

0.0018 1

0.0009 1

0.0000

0.8

N e — N e - n 9
o — — — — — — —

Values in Thousa...

The test results were not unexpected—these
distributions are very similar in shape overall.

Our interest is in the (small) differences in the
tails of these of these distributions.

Note that the distribution with the smallest k
factor provides the greatest protection against
accepting a nonconforming design (i.e., the
largest lower limit and the smallest upper limit).

Gamma Par... Weibull Par...

0.0040 -
0.0035 1
0.0030 1
0.0025 1
0.0020 1
0.0015 1
0.0010 1
0.0005
0.0000

@®
S

0.0036 1

0.0027 1

0.0018 1

0.0009

0.0000
@ 9o - N o T . 9
o ! i l

H { . x e — N « < n ©
— — — — o — — —

® H ; :
o i -~ i !

Values in Thousa... Values in Thousa...
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Application

Upper limit sampling plans (a=0.2)

-I--

Binomial (ASA plan) 2959
Normal(1200, 0) 257
Gamma(41.1, 15.5984, 558.906) 224
Weibull(3.68187, 366.6, 869.25) 296

Lower limit sampling plans (a=0.2)

-I--

Binomial (ASA plan) 2959
Normal(1200, 0) 257
Gamma(41.1, 15.5984, 558.906) 353
Weibull(3.68187, 366.6, 869.25) 615

2.968
3.378
2.787

2.968
2.566
2.677

1497
1538
1479

903
943
932

The plan with the
tightest bound wiill
yield the most
conservative
decision—one that
guarantees the
consumer’s risk is no
greater than specified.

For the example
requirement, the
Weibull plan provides
the tightest (least)
upper bound.

The Gamma plan
provides the tightest
(greatest) lower
bound.

These plans provide an order-of-magnitude reduction in computing effort.
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Test case 2—Right skew

Right Sk...

The second

1.0... 1.4...

case considers

=== Normal(1200,100)

ho,

moderate 0.0001

0.0000

1200.0000
100.0000
0.0000
3.0000

RiskShift

WEI b U I I ain d 0.0040 +—— 2{{5:;’55
G a m m a 0.0035 - Kurtosis
. . . 0.0030 ___ Gamma(1.77,103,
distributions 0.0025 ] (1017.69)
with identical o Sid ey
means and 0.0010

1200.0000
137.0326
1.5033
6.3898

Weibull(2.04,220,RiskShift

= (1005.091))

lll
skew. S T T T B

Values in Thousa...

3 '00"".’
T #‘ 1 'm Mean
n
i

© N Std Dev
-~ ~— Skewness
Kurtosis

1200.0000
100.0845
0.6049
3.1971

condition: limit (upper or lower)
reliability: p=0.9973
consumer’s risk: 3=0.1

Fitting tests were performed for the same requirement
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Test 2 procedure and results

30 samples of 300 trials each were
drawn from the parent Weibull
distribution.

Normal, Gamma, Weibull, and
Exponential distributions were fit to
sample using commercial software.

In general, good fits to the Weibull data
were achieved with the Weibull
distribution and sometimes the Gamma
distribution.

The skew is sufficiently large that the
data are not mistaken as Normal.

The skew is sufficiently small that the
data are not mistaken as Exponential.

The test procedure was repeated for a
the parent Gamma distribution, with
no appreciable change in the nature of
the results.

0.040 1

0.035 1

0.030

0.025 1

0.020 1

0.015 1

0.010 1

0.005 1

0.000

1.00

1.03

Fit Comparison for Dataset #...
RiskGamma(1.6795,15.882,RiskShift(1017.756))
RiskWeibull(1.3067,28.602,RiskShift(1018.077))

RiskExpon(26.261,RiskShift(1018.082))

1.06

o)
<
-

<

alues in Thousa...

1.12
1

. Input

Minimum  1018.1691
Maximum 1139.1776
Mean 1044.4303
Std Dev 20.9583
Values 300

= Gamma

Minimum 1017.7560
Maximum +00
Mean 1044.4298
Std Dev 20.5824

m— Weibull

Minimum 1018.0770
Maximum +00
Mean 1044.4660

Std Dev 20.3717

== Expon

Minimum 1018.0820
Maximum +00
Mean 1044.3430
Std Dev 26.2610

we Normal

Conclusion: For our example, the size of the sampling plan is inadequate to

distinguish between Weibull and Gamma, but adequate to rule out Normal and

Exponential parents.

Minimum —00
Maximum +00
Mean 1044.4300
Std Dev 20.9930




Useful result 2

* As before, the test results were not unexpected
Acceptance limits for and our interest is in the (small) differences in the
0=0.9973 for the three tails of these of these distributions.

parent distributions. e As before, the distribution with the fattest tail in
the direction of the limit provides the greatest

protection against accepting a nonconforming

Normal 922 1478 design.
Gamma 1023 1806 * However, with sufficient skew as in this example,
Weibull 1017 1531 we can rule out Normal as the parent (poor fit).

Normal Par... Gamma Par... Weibull Par...
1.4... @ 8... 1.0...

) 99.... .. ]
0.0040 - y 4 0.0040 -
0.0035 - /

0.0035 1
0.0030 0.0030 1
0.0025 1

0.0025 1
0.0020 0.0020
0.0015 1

0.0015 1
0.0010 1 0.0010 1
0.0005

0.0005
0.0000

T 1

[Tp) N o [Tp)

S & . : . ] . ek S S

i - i i —i
Values in Thousa... Values in Thousa...

1.90

0.90

N
i
i




Application

Upper limit sampling plans (a=0.2)

-I--

Binomial (ASA plan) 2959
Normal{1200,0} 257
Gamma(1.77,15.5984,1017.7) 278
Weibull(2.04,220,1005.9) 264

Lower limit sampling plans (a=0.2)

-I--

Binomial (ASA plan) 2959
Normal{1200,0} 257
Gamma(1.77.15.5984,1017.7) 25009
Weibull(2.04,220,1005.6) 3651

2968 1497
4.915 1873
3.557 1557

2968 903
1.304 1018
1.855 1015

Once again, the plan
with the tightest
bound will yield a
conservative decision.

The Weibull plan
provides the tightest
(least) upper bound
and can be used in
this case.

The Gamma plan
provides the tightest
(greatest) upper
bound, but is very
large. Obviously, the
ASA plan is preferable
in this case.

The UL plan provides an order-of-magnitude reduction in computing effort.
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Test case 3—Near Exponential LL

* A typical application is lifetime data, where the random
variable X represents the time at which a component fails
and the condition is the lower limit L=X_:.

* Note that Expo(&), Gamma(1l,6), and Weibull(1, ) are the
same distribution.

- 0.
0.... 99....
0.... 99.... . Expon(100000)
0.... 99.. Minimum 0.0000
1.2 .
Maximum +00
Mean 100000.0000
1.0 - Std Dev  100000.0000
:0.8 1 m==_ Gamma(1,100000)
o
i
<06 1 Minimum 0.0000
g ' Maximum +00
E Mean 100000.0000
£0.4 - Std Dev  100000.0000
0.2 1 === \Weibull(1,100000)
0.0 Minimum 0.0000
' Maximum +00
2 © 8 8 S B 8 B 8 B 8SmMen  100000.0000
— ™ o™ < <

o

LN

i (V] (gl
Values in Thousa...

") Std Dev  100000.0000
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Plan comparisons

 The Exponential plan is very small—more than three orders of
magnitude smaller than the attributes plan.

* The Gamma and Weibull plans are identical and very large—almost three
orders of magnitude larger than the attributes plan.
This remarkable difference in n flows from the fact that Exponential has a

single parameter and fixed shape—if we know a prior the parent is
exponential, then we need only estimate the mean.

 The Gamma and Weibull plans are the same, both derived from the
same approximation. These are more conservative than the exponential
(the true value of A=270.37), but unusable in this application because of
their size.

Lower limit sampling plans (0t=0.02)

----

Binomial (ASA plan) 6580
Exponential(100000) 13 0.9806 1940.00
Gamma(1, 100000) 3819299 0.9979 2060.45

Weibull(1,100000) 3819299 0.9979 2060.45
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Test case 3—modest skew

* 30 samples of 13 trials each were
drawn from the parent Exponential
distribution

* Gamma, Weibull, and Exponential
distributions were fit to these
datasets (shifts set to zero for
lifetime data).

* Fits were compared using three
alternative goodness-of-fit tests.

* Best fits were dependent GOF test
and there were many ties for best
fit.

* Acceptable fits to exponential (p-
value>0.15) where obtained in most
cases (30 Chi-squared, 25 K-S, 23 A-
D).

e Exponential or binomial are the only
practical plans in this case and
acceptable Exponential fits most
often can be achieved for
Exponential parent distributions.

Values x 10...

Fit Comparison for Dataset...
RiskGamma(2.8722,20208)
RiskWeibull(1.8837,65618)

RiskExpon(58044)

1.8

1.6

1.4

o
®

0.6

0.4

0.2

0.0

. Input

Minimum

14155.0712

Maximum 113522.9475

Mean
Std Dev
Values

Mean
Std Dev

58044.1289
32482.0183
13

58041.4176

ev 34247.6418

58243.6844
32134.6112

0.0000
+00

58044.0000

ev  58044.0000
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Effect of skew

But what about datasets from Weibull and Gamma
parents masquerading as Exponential?

Skew...

0.0...

0.010 §

0.008 1

0.006 1

0.004 4

0.002 4

0.000

758.3...

=== Expon(100000)

Maximum +00
Mean 100000.0000
Std Dev  100000.0000
Skewness 2.0000

= Weibull(.8,88261.1)

Maximum +00
Mean 100000.0996
Std Dev  126051.4042
Skewness 2.8146

=== Gamma(.8,125000)

Minimum 0.0000

Maximum +00

< o
<} <}
Values in Thousa...

0.0
0.2

0.8 1

" Mean 100000.0000
© Std Dev  111803.3989
™ Skewness 2.2361

Minimum 0.0000

Minimum 0.0000

99....
99....

Na

0.0
0.2 1

Values in Thousa...

=== Expon(100000)

Minimum 0.0000
Maximum +00
Mean 100000.0000
Std Dev 100000.0000
Skewness 2.0000

= Weibull(1.1,103637)

Minimum 0.0000
Maximum +00
Mean 100000.6356
Std Dev 91022.1378
Skewness 1.7340

=== Gamma(1.1,90909.1)

Minimum 0.0000
Maximum +00
Mean 100000.0100

© Std Dev 95346.2685
~— Skewness 1.9069

The Exponential plans are conservative for Wiebull parents with
skew >2 and non-conservative for skew < 2. Accepting the
Exponential fit in the second case will result in a modesty lower
reliability than specified (0.995 rather than 0.997 in this example).
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Can modest skew be detected?

* 30 samples of 13 trials each were drawn from the parent
Weibull distribution with skew=0.631

 Gamma, Weibull, and Exponential distributions were fit to
these datasets (shifts set to zero for lifetime data).

* A-D and K-S tests typically showed very poor fits to
Exponential even with these small samples (Chi-squared
test appears to lack power).

* P-P and Q-Q plots illustrated that the Exponential fits
were poorest in the region of interest .

Conclusion: With a small sample and skew = 2 it is not
possible to discern the parent distribution; with lesser skew
Weibull and Gamma will not be confused with Exponential.
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o

Procedure for S ——
determining
a sampling

plan

FINISH
Use the {nc) attributes plan

Do you have the computing
budget to run this plan?

Draw the largest sample permitted by
wour computing budget

¥

Fit all supported distributions to the sample
data and determine GOF for each

. FIMISH
Do wou reject all of the i
distributions basad an poar fits? There is no accaptance sampling
plan for your budget

LOWER
LIMIT

UPFER
LINIT

|2 vour requirement for a lower
limit or an upper limit?




Procedure (lower limit plans)

The general rule is to select the distribution with
the thinmest left tail (the largest critical lower
limit), The distributions given below assumes a
reqjuirement specifying high reliability (r = 0.99).

Whait i= the shape of the fitad
distributicn?

- f NEAR EXPOMNENTIAL
il (skew = 2)
el FIMISH
- Q the (n.k) Exponential plan
3 i RIGHT SKEW
" (2 > skew > 0) FINISH
- There is no acceptance
- sampling plan for your budget
MEAR MORMAL
(skew = 0)
FIMNIEH
Use the (k) Gamma plan
LEFT SKEW
Iskew < D) FINISH
se the (n &) Mormal plan (fit

per |tt|ng} {:ﬂ'ler-.ulse use the
Wikl plan




Procedure (upper limit plans)

The gereral rule is to select the distribution with
the thinnest right tail (the smallest critical upper
limit), The distributions given below assume a
requiremeant specifying high reliability (r = 0.895).

What Is the shape of the fittad
distribution?

- F NEAR EXPONENTIAL
o Srew=? FINISH
] Use the (».4) Exponential plan
,, 3 RIGHT SKEW
o] (2 = skew = 0)
- FINISH
= Run the (&) Weibull plan
MEAR MORMAL
(skew =)
FINISH
Use the (# &) Weibull plan
LEFT SKEW
(skew = 0}
FINISH

Llse the (a, &) Waibull plan




Summary

* ASA plans are preferred when computational demands can be met.
These plans are exact and transparent.

* ASV plans are a viable alternative, when ASA plans are too large.
These plans are inherently approximate; the data (perhaps
transformed) must fit the a distribution for which ASA calculator is
available. The assistance of a statistician would be beneficial.

* For data with skew less than Exponential, the Normal, Gamma, or
Weibull plan with the tightest bound is a good choice—it is
conservative and can provide an order of magnitude reduction in
computational effort.

* For near-Exponential data with a lower limit, the Exponential plan is
not necessarily conservative (and should be applied intelligently and
with caution)—but can provide several orders of magnitude reduction
in computational effort.

* In some applications, uncertainties in the protection afforded by
Exponential may be inconsequential when model error is considered.

 When applying the Exponential, a good practice is to make as many
trials as feasible and then attempt a fit to the distributions currently
supported.
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Contributions

Variables acceptance can reduce sample sizes and the
reduction can be as much as one, two, and even three orders of
magnitude depending on the distribution and OC. But thisisn't
always the case. Gamma and Weibull plans become larger than
attributes plans as the shape parameter decreases.

Normal plans don't work well for inverse Gaussian. But the
published inverse Gaussian plans don't work either. We've
found the error in the derivation and | think | may have a fix
given the time to mess with it. That's news.

The purpose of variables acceptance is to reduce sample size.
But in accomplishing this we can't be sure that we satisfy the
fundamental assumption that the distribution is known, at least
for the OC we are interested in. Assuming we want to be
conservative with respect to consumer's risk, we've developed
a procedure to overcome this issue.
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